If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15k^2+8k+1=0
a = 15; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·15·1
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2}{2*15}=\frac{-10}{30} =-1/3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2}{2*15}=\frac{-6}{30} =-1/5 $
| 3j-5=-16 | | -2+2*y=6 | | (2x+5)=(8x-18)1/2 | | 18=w/2+15 | | -5(7x+14=175 | | -3(1-6x)=-75 | | -8x+3=115 | | -1/2(4x+2)=2x+2 | | −6(s−3)=30 | | -95=-5(1+2v) | | 10-4h=2h+4 | | 4(x+5)+1x=10x+20-5x | | -10p-6=-4p-6-6p | | 25=1+3x+3 | | X²-115x+1500=0 | | 3/2=-1/2x | | P+6(2p+8)=5p | | 59.50=2x+9.50 | | 2y/5-y-3/8=1/10 | | a=1/2(4+10)6 | | 12x+30+18=3x+33-x | | 4x+5=-4/6 | | 6m-21/2=m+121/3 | | 1=(6x-11) | | 2x+3+3x+7=30 | | 75=-3(4x-5) | | -2x-9=16 | | -16+x=10 | | 3p-2=2p-8 | | 20+7v=3+4(4v-7) | | 2(4x-3)-8=2x | | 18+2y=48 |